A data-driven artificial neural network model for the prediction of ground motion from induced seismicity: The case of The Geysers geothermal field

نویسندگان

چکیده

Ground-motion models have gained foremost attention during recent years for being capable of predicting ground-motion intensity levels future seismic scenarios. They are a key element estimating hazard and always demand timely refinement in order to improve the reliability maps. In present study, we propose ground motion prediction model induced earthquakes recorded The Geysers geothermal area. We use fully connected data-driven artificial neural network (ANN) fit parameters. Especially, used data from 212 at 29 stations Berkeley–Geysers between September 2009 November 2010. magnitude range is 1.3 3.3 moment (Mw), whereas hypocentral distance 0.5 20 km. motions predicted terms peak acceleration (PGA), velocity (PGV), 5% damped spectral (SA) T=0.2, 0.5, 1 s. values our deep learning compared with observed predictions made by empirical equations developed Sharma et al. (2013) same set using nonlinear mixed-effect (NLME) regression technique. For validation approach, on separate 25 region, magnitudes ranging 1.0 3.1 distances 1.2 15.5 km, ANN providing 3% improvement baseline GMM model. results obtained study show moderate unravel modeling features that were not taken into account comparison measured both R 2 statistic total standard deviation, together inter-event intra-event components.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

a study on insurer solvency by panel data model: the case of iranian insurance market

the aim of this thesis is an approach for assessing insurer’s solvency for iranian insurance companies. we use of economic data with both time series and cross-sectional variation, thus by using the panel data model will survey the insurer solvency.

the effect of traffic density on the accident externality from driving the case study of tehran

در این پژوهش به بررسی اثر افزایش ترافیک بر روی تعداد تصادفات پرداخته شده است. به این منظور 30 تقاطع در شهر تهران بطور تصادفی انتخاب گردید و تعداد تصادفات ماهیانه در این تقاطعات در طول سالهای 89-90 از سازمان کنترل ترافیک شهر تهران استخراج گردید و با استفاده از مدل داده های تابلویی و نرم افزار eviews مدل خطی و درجه دوم تخمین زده شد و در نهایت این نتیجه حاصل شد که تقاطعات پر ترافیک تر تعداد تصادفا...

15 صفحه اول

the use of appropriate madm model for ranking the vendors of mci equipments using fuzzy approach

abstract nowadays, the science of decision making has been paid to more attention due to the complexity of the problems of suppliers selection. as known, one of the efficient tools in economic and human resources development is the extension of communication networks in developing countries. so, the proper selection of suppliers of tc equipments is of concern very much. in this study, a ...

15 صفحه اول

investigating the feasibility of a proposed model for geometric design of deployable arch structures

deployable scissor type structures are composed of the so-called scissor-like elements (sles), which are connected to each other at an intermediate point through a pivotal connection and allow them to be folded into a compact bundle for storage or transport. several sles are connected to each other in order to form units with regular polygonal plan views. the sides and radii of the polygons are...

the effect of consciousness raising (c-r) on the reduction of translational errors: a case study

در دوره های آموزش ترجمه استادان بیشتر سعی دارند دانشجویان را با انواع متون آشنا سازند، درحالی که کمتر به خطاهای مکرر آنان در متن ترجمه شده می پردازند. اهمیت تحقیق حاضر مبنی بر ارتکاب مکرر خطاهای ترجمانی حتی بعد از گذراندن دوره های تخصصی ترجمه از سوی دانشجویان است. هدف از آن تاکید بر خطاهای رایج میان دانشجویان مترجمی و کاهش این خطاها با افزایش آگاهی و هوشیاری دانشجویان از بروز آنها است.از آنجا ک...

15 صفحه اول

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Frontiers in Earth Science

سال: 2022

ISSN: ['2296-6463']

DOI: https://doi.org/10.3389/feart.2022.917608